3.33 \(\int \sec ^m(c+d x) (b \sec (c+d x))^n (A+B \sec (c+d x)) \, dx\)

Optimal. Leaf size=172 \[ \frac{B \sin (c+d x) \sec ^m(c+d x) (b \sec (c+d x))^n \text{Hypergeometric2F1}\left (\frac{1}{2},\frac{1}{2} (-m-n),\frac{1}{2} (-m-n+2),\cos ^2(c+d x)\right )}{d (m+n) \sqrt{\sin ^2(c+d x)}}-\frac{A \sin (c+d x) \sec ^{m-1}(c+d x) (b \sec (c+d x))^n \text{Hypergeometric2F1}\left (\frac{1}{2},\frac{1}{2} (-m-n+1),\frac{1}{2} (-m-n+3),\cos ^2(c+d x)\right )}{d (-m-n+1) \sqrt{\sin ^2(c+d x)}} \]

[Out]

-((A*Hypergeometric2F1[1/2, (1 - m - n)/2, (3 - m - n)/2, Cos[c + d*x]^2]*Sec[c + d*x]^(-1 + m)*(b*Sec[c + d*x
])^n*Sin[c + d*x])/(d*(1 - m - n)*Sqrt[Sin[c + d*x]^2])) + (B*Hypergeometric2F1[1/2, (-m - n)/2, (2 - m - n)/2
, Cos[c + d*x]^2]*Sec[c + d*x]^m*(b*Sec[c + d*x])^n*Sin[c + d*x])/(d*(m + n)*Sqrt[Sin[c + d*x]^2])

________________________________________________________________________________________

Rubi [A]  time = 0.110761, antiderivative size = 172, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 4, integrand size = 29, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.138, Rules used = {20, 3787, 3772, 2643} \[ \frac{B \sin (c+d x) \sec ^m(c+d x) (b \sec (c+d x))^n \, _2F_1\left (\frac{1}{2},\frac{1}{2} (-m-n);\frac{1}{2} (-m-n+2);\cos ^2(c+d x)\right )}{d (m+n) \sqrt{\sin ^2(c+d x)}}-\frac{A \sin (c+d x) \sec ^{m-1}(c+d x) (b \sec (c+d x))^n \, _2F_1\left (\frac{1}{2},\frac{1}{2} (-m-n+1);\frac{1}{2} (-m-n+3);\cos ^2(c+d x)\right )}{d (-m-n+1) \sqrt{\sin ^2(c+d x)}} \]

Antiderivative was successfully verified.

[In]

Int[Sec[c + d*x]^m*(b*Sec[c + d*x])^n*(A + B*Sec[c + d*x]),x]

[Out]

-((A*Hypergeometric2F1[1/2, (1 - m - n)/2, (3 - m - n)/2, Cos[c + d*x]^2]*Sec[c + d*x]^(-1 + m)*(b*Sec[c + d*x
])^n*Sin[c + d*x])/(d*(1 - m - n)*Sqrt[Sin[c + d*x]^2])) + (B*Hypergeometric2F1[1/2, (-m - n)/2, (2 - m - n)/2
, Cos[c + d*x]^2]*Sec[c + d*x]^m*(b*Sec[c + d*x])^n*Sin[c + d*x])/(d*(m + n)*Sqrt[Sin[c + d*x]^2])

Rule 20

Int[(u_.)*((a_.)*(v_))^(m_)*((b_.)*(v_))^(n_), x_Symbol] :> Dist[(b^IntPart[n]*(b*v)^FracPart[n])/(a^IntPart[n
]*(a*v)^FracPart[n]), Int[u*(a*v)^(m + n), x], x] /; FreeQ[{a, b, m, n}, x] &&  !IntegerQ[m] &&  !IntegerQ[n]
&&  !IntegerQ[m + n]

Rule 3787

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Dist[a, Int[(d*
Csc[e + f*x])^n, x], x] + Dist[b/d, Int[(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, n}, x]

Rule 3772

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(b*Csc[c + d*x])^(n - 1)*((Sin[c + d*x]/b)^(n - 1)
*Int[1/(Sin[c + d*x]/b)^n, x]), x] /; FreeQ[{b, c, d, n}, x] &&  !IntegerQ[n]

Rule 2643

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(Cos[c + d*x]*(b*Sin[c + d*x])^(n + 1)*Hypergeomet
ric2F1[1/2, (n + 1)/2, (n + 3)/2, Sin[c + d*x]^2])/(b*d*(n + 1)*Sqrt[Cos[c + d*x]^2]), x] /; FreeQ[{b, c, d, n
}, x] &&  !IntegerQ[2*n]

Rubi steps

\begin{align*} \int \sec ^m(c+d x) (b \sec (c+d x))^n (A+B \sec (c+d x)) \, dx &=\left (\sec ^{-n}(c+d x) (b \sec (c+d x))^n\right ) \int \sec ^{m+n}(c+d x) (A+B \sec (c+d x)) \, dx\\ &=\left (A \sec ^{-n}(c+d x) (b \sec (c+d x))^n\right ) \int \sec ^{m+n}(c+d x) \, dx+\left (B \sec ^{-n}(c+d x) (b \sec (c+d x))^n\right ) \int \sec ^{1+m+n}(c+d x) \, dx\\ &=\left (A \cos ^{m+n}(c+d x) \sec ^m(c+d x) (b \sec (c+d x))^n\right ) \int \cos ^{-m-n}(c+d x) \, dx+\left (B \cos ^{m+n}(c+d x) \sec ^m(c+d x) (b \sec (c+d x))^n\right ) \int \cos ^{-1-m-n}(c+d x) \, dx\\ &=-\frac{A \, _2F_1\left (\frac{1}{2},\frac{1}{2} (1-m-n);\frac{1}{2} (3-m-n);\cos ^2(c+d x)\right ) \sec ^{-1+m}(c+d x) (b \sec (c+d x))^n \sin (c+d x)}{d (1-m-n) \sqrt{\sin ^2(c+d x)}}+\frac{B \, _2F_1\left (\frac{1}{2},\frac{1}{2} (-m-n);\frac{1}{2} (2-m-n);\cos ^2(c+d x)\right ) \sec ^m(c+d x) (b \sec (c+d x))^n \sin (c+d x)}{d (m+n) \sqrt{\sin ^2(c+d x)}}\\ \end{align*}

Mathematica [A]  time = 0.213094, size = 126, normalized size = 0.73 \[ \frac{\sqrt{-\tan ^2(c+d x)} \csc (c+d x) \sec ^m(c+d x) (b \sec (c+d x))^n \left (A (m+n+1) \cos (c+d x) \text{Hypergeometric2F1}\left (\frac{1}{2},\frac{m+n}{2},\frac{1}{2} (m+n+2),\sec ^2(c+d x)\right )+B (m+n) \text{Hypergeometric2F1}\left (\frac{1}{2},\frac{1}{2} (m+n+1),\frac{1}{2} (m+n+3),\sec ^2(c+d x)\right )\right )}{d (m+n) (m+n+1)} \]

Antiderivative was successfully verified.

[In]

Integrate[Sec[c + d*x]^m*(b*Sec[c + d*x])^n*(A + B*Sec[c + d*x]),x]

[Out]

(Csc[c + d*x]*(A*(1 + m + n)*Cos[c + d*x]*Hypergeometric2F1[1/2, (m + n)/2, (2 + m + n)/2, Sec[c + d*x]^2] + B
*(m + n)*Hypergeometric2F1[1/2, (1 + m + n)/2, (3 + m + n)/2, Sec[c + d*x]^2])*Sec[c + d*x]^m*(b*Sec[c + d*x])
^n*Sqrt[-Tan[c + d*x]^2])/(d*(m + n)*(1 + m + n))

________________________________________________________________________________________

Maple [F]  time = 0.995, size = 0, normalized size = 0. \begin{align*} \int \left ( \sec \left ( dx+c \right ) \right ) ^{m} \left ( b\sec \left ( dx+c \right ) \right ) ^{n} \left ( A+B\sec \left ( dx+c \right ) \right ) \, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)^m*(b*sec(d*x+c))^n*(A+B*sec(d*x+c)),x)

[Out]

int(sec(d*x+c)^m*(b*sec(d*x+c))^n*(A+B*sec(d*x+c)),x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (B \sec \left (d x + c\right ) + A\right )} \left (b \sec \left (d x + c\right )\right )^{n} \sec \left (d x + c\right )^{m}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^m*(b*sec(d*x+c))^n*(A+B*sec(d*x+c)),x, algorithm="maxima")

[Out]

integrate((B*sec(d*x + c) + A)*(b*sec(d*x + c))^n*sec(d*x + c)^m, x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left ({\left (B \sec \left (d x + c\right ) + A\right )} \left (b \sec \left (d x + c\right )\right )^{n} \sec \left (d x + c\right )^{m}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^m*(b*sec(d*x+c))^n*(A+B*sec(d*x+c)),x, algorithm="fricas")

[Out]

integral((B*sec(d*x + c) + A)*(b*sec(d*x + c))^n*sec(d*x + c)^m, x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \left (b \sec{\left (c + d x \right )}\right )^{n} \left (A + B \sec{\left (c + d x \right )}\right ) \sec ^{m}{\left (c + d x \right )}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)**m*(b*sec(d*x+c))**n*(A+B*sec(d*x+c)),x)

[Out]

Integral((b*sec(c + d*x))**n*(A + B*sec(c + d*x))*sec(c + d*x)**m, x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (B \sec \left (d x + c\right ) + A\right )} \left (b \sec \left (d x + c\right )\right )^{n} \sec \left (d x + c\right )^{m}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^m*(b*sec(d*x+c))^n*(A+B*sec(d*x+c)),x, algorithm="giac")

[Out]

integrate((B*sec(d*x + c) + A)*(b*sec(d*x + c))^n*sec(d*x + c)^m, x)